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Abstract

In this paper, we study the existence of infinitely many homoclinic solutions for a
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1 Introduction and main results

Consider the following second order Hamiltonian system

ü− L(t)u+Wu(t, u) = 0, ∀ t ∈ R, (HS)

where u = (u1, . . . , uN) ∈ RN , L ∈ C
(
R,RN2

)
is a symmetric matrix-valued function,

and Wu(t, u) denotes the gradient of W (t, u) with respect to u. Here, as usual, we say

that a solution u of (HS) is homoclinic (to 0) if u ∈ C2
(
R,RN

)
, u(t) 6≡ 0, and u(t) → 0

as |t| → ∞.

With the aid of variational methods, the existence and multiplicity of homoclinic

solutions for (HS) have been extensively investigated in the literature over the past several

decades (see, e.g., [1–27] and the references therein). Many early papers (see, e.g., [1–3,
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6,8–10,15–17]) treated the periodic (including autonomous) case where L(t) and W (t, u)

are either independent of t or periodic in t. Compared to the periodic case, the problem

is quite different in nature for the nonperiodic case due to the lack of compactness of

the Sobolev embedding. After the work of Rabinowitz and Tanaka [17], there are many

papers (see, e.g., [4, 5, 7, 9, 11–14, 18–27]) concerning the nonperiodic case. For this case,

the function L plays an important role. Actually, most of these mentioned papers assumed

that L is either coercive or uniformly positively definite. Besides, we also note that all

these papers required W (t, u) to satisfy some kind of growth conditions at infinity with

respect to u, such as superquadratic, asymptotically quadratic or subquadratic growth.

In the recent paper [28], the authors obtained infinitely many homoclinic solutions for

(HS) without any conditions assumed on W (t, u) for |u| large. To be precise, W (t, u) in

that paper is only locally defined near the origin with respect to u, but L is required to

satisfy a very strong coercivity condition. Motivated by [28], in the present paper, we

will study the existence of infinitely many homoclinic solutions for (HS) in the case where

L is unnecessarily coercive, and W (t, u) is still only locally defined near the origin with

respect to u. More precisely, we make the following assumptions:

(L0) l0 := inf
t∈R

[
min

|u|=1, u∈RN
L(t)u · u

]
> 0.

(W1) W ∈ C1(R × Bδ(0),R) is even in u and W (t, 0) ≡ 0, where Bδ(0) is the open ball

in RN centered at 0 with radius δ.

(W2) There exist constants ν ∈ (1, 2), µ1 ∈ [1, 2], µ2 ∈ [1, 2/(2 − ν)] and nonnegative

functions ξi ∈ Lµi(R,R) (i = 1, 2) such that

|Wu(t, u)| ≤ ξ1(t) + ξ2(t)|u|ν−1, ∀ (t, u) ∈ R×Bδ(0).

(W3) There exist a constant % > 0, a closed interval I0 ⊂ R and two sequences of positive

numbers δn → 0, Mn →∞ as n→∞ such that

W (t, u) ≥ −%|u|2, ∀ t ∈ I0 and |u| < δ

and

W (t, u)/δ2n ≥Mn, ∀ t ∈ I0, n ∈ N and |u| = δn.

Our main result reads as follows.
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Theorem 1.1. Suppose that (L0) and (W1)–(W3) are satisfied. Then (HS) possesses a

sequence of homoclinic solutions {uk} such that maxt∈R |uk(t)| → 0 as k →∞.

Remark 1.2. Compared to Theorem 1.1 in [28], the matrix-valued function L in our

Theorem 1.1 is not required to satisfy the coercivity condition (L1) or the technical con-

dition (L2) of Theorem 1.1 in [28]. In addition, our Theorem 1.1 also essentially improves

some related results in the existing literature. It is easy to see that the conditions of

our Theorem 1.1 are weaker than those of Theorem 1.2 in [12, 18, 19]. Indeed, there is a

function W which satisfies conditions (W1)–(W3) but does not satisfy the corresponding

conditions of Theorem 1.2 in [12,18,19]. For example, let

W (t, u) =

{
te−t

2 |u|α sin2( 1
|u|ε ), 0 < |u| < 1,

0, u = 0,

where ε > 0 small enough and α ∈ (1 + ε, 2). Then it is easy to check that W satisfies

conditions (W1)–(W3) with ν = α−ε, ξ1(t) ≡ 0, ξ2(t) = (α+ε)|t|e−t2 and δn = ( 2
(2n+1)π

)1/ε

for all n ∈ N.

2 Variational setting and proof of the main result

Consider the space E := {u ∈ H1(R,RN) |
∫
R L(t)u · udt < ∞} equipped with the

following inner product

(u, v) =

∫
R
(u̇ · v̇ + L(t)u · v)dt.

Then E is a Hilbert space and we denote by ‖ · ‖ the associated norm. Moreover, we

write E∗ for the topological dual of E with norm ‖ · ‖E∗ , and 〈·, ·〉 : E∗ × E → R for

the dual pairing. Evidently, E is continuously embedded into H1
(
R,RN

)
. Hence E is

continuously embedded into Lp ≡ Lp
(
R,RN

)
for all p ∈ [2,∞] and compactly embedded

into Lploc ≡ Lploc
(
R,RN

)
for all p ∈ [1,∞]. Consequently, there exists τp > 0 such that

‖u‖p ≤ τp‖u‖, ∀u ∈ E, (2.1)

where ‖ · ‖p denotes the usual norm in Lp for p ∈ [2,∞].

In order to prove our main result via the critical point theory, we need to modify

W (t, u) for u outside a neighborhood of the origin to get W̃ (t, u) as follows.
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Choose a constant b ∈ (0, δ/2) and define a cut-off function χ ∈ C1(R+,R+) such that

χ(t) ≡ 1 for 0 ≤ t ≤ b, χ(t) ≡ 0 for t ≥ 2b, and −2/b ≤ χ′(t) < 0 for b < t < 2b. Let

W̃ (t, u) = χ(|u|)W (t, u), ∀ (t, u) ∈ R× RN . (2.2)

Combining (W1), (W2) and the definition of χ, we have∣∣∣W̃ (t, u)
∣∣∣ ≤ ξ1(t)|u|+ ξ2(t)|u|ν , ∀ (t, u) ∈ R× RN (2.3)

and ∣∣∣W̃u(t, u)
∣∣∣ ≤ c1

(
ξ1(t) + ξ2(t)|u|ν−1

)
, ∀ (t, u) ∈ R× RN (2.4)

for some c1 > 0.

Now we introduce the following modified Hamiltonian system

ü− L(t)u+ W̃u(t, u) = 0, ∀ t ∈ R (H̃S)

and define the variational functional Φ associated with (H̃S) by

Φ(u) =
1

2

∫
R
(|u̇|2 + L(t)u · u)dt−Ψ(u)

=
1

2
‖u‖2 −Ψ(u), where Ψ(u) =

∫
R
W̃ (t, u)dt. (2.5)

Proposition 2.1. Let (L0), (W1) and (W2) be satisfied. Then Ψ ∈ C1(E,R) and Ψ ′ :

E → E∗ is compact, and hence Φ ∈ C1(E,R). Moreover,

〈Ψ ′(u), v〉 =

∫
R
W̃u(t, u) · vdt, (2.6)

〈Φ ′(u), v〉 = (u, v)− 〈Ψ ′(u), v〉

= (u, v)−
∫
R
W̃u(t, u) · vdt (2.7)

for all u, v ∈ E, and nontrivial critical points of Φ on E are homoclinic solutions of (H̃S).

Proof. First, we show that Φ and Ψ are both well defined. For notational simplicity, we

set

µ∗1 :=
µ1

µ1 − 1
, µ∗2 :=

νµ2

µ2 − 1
(µ∗i =∞ if µi = 1, i = 1, 2),
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and always use these notations in the sequel. Since µ1 ∈ [1, 2], µ2 ∈ [1, 2/(2−ν)] in (W2),

it is easy to see that µ∗i ∈ [2,∞] for i = 1, 2. For any u ∈ E, by (2.1), (2.3) and the

Hölder inequality, we have∫
R

∣∣W̃ (t, u)
∣∣dt ≤ ∫

R
ξ1(t)|u|dt+

∫
R
ξ2(t)|u|νdt

≤ |ξ1|µ1‖u‖µ∗1 + |ξ2|µ2‖u‖νµ∗2
≤ τµ∗1 |ξ1|µ1‖u‖+ τ νµ∗2 |ξ2|µ2‖u‖

ν <∞, (2.8)

where | · |µi denotes the usual norm of in Lµi(R,R) and τµ∗i is the constant given in (2.1)

for i = 1, 2. This together with (2.5) implies that Φ and Ψ are both well defined.

Next, we prove Ψ ∈ C1(E,R) and Ψ ′ : E → E∗ is compact. For any given u ∈ E,

define an associated linear operator J (u) : E → R by

〈J (u), v〉 =

∫
R
W̃u(t, u) · vdt, ∀ v ∈ E.

By (2.1), (2.4) and the Hölder inequality, there holds

|〈J (u), v〉| ≤
∫
R

∣∣W̃u(t, u)
∣∣|v|dt

≤ c1

(∫
R
ξ1(t)|v|dt+

∫
R
ξ2(t)|u|ν−1|v|dt

)
≤ c1

(
|ξ1|µ1‖v‖µ∗1 + |ξ2|µ2‖u‖ν−1µ∗2

‖v‖µ∗2
)

≤ c1(τµ∗1 |ξ1|µ1 + τ νµ∗2 |ξ2|µ2‖u‖
ν−1)‖v‖, ∀ v ∈ E,

where c1 is the constant given in (2.4). This implies that J (u) is well defined and bounded.

By (2.4), for any η ∈ [0, 1], there holds∣∣W̃u(t, u+ ηv) · v
∣∣ ≤ c1

[
ξ1(t)|v|+ 2ξ2(t)

(
|u|ν−1|v|+ |v|ν

)]
, ∀ t ∈ R and u, v ∈ RN .

Therefore, for any u, v ∈ E, by the Mean Value Theorem and Lebesgue’s Dominated

Convergence Theorem, we have

lim
s→0

Ψ(u+ sv)−Ψ(u)

s
= lim

s→0

∫
R
W̃u (t, u+ θ(t)sv) · vdt

=

∫
R
W̃u(t, u) · vdt

= 〈J (u), v〉, (2.9)
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where θ(t) ∈ [0, 1] depends on u, v, s. This implies that Ψ is Gâteaux differentiable on E

and the Gâteaux derivative of Ψ at u ∈ E is J (u). Let un ⇀ u in E as n → ∞, then

{un} is bounded in E and

un → u in L∞loc as n→∞. (2.10)

Consequently, there exists a constant D0 > 0 such that

‖un‖ν−1 + ‖u‖ν−1 ≤ D0, ∀n ∈ N. (2.11)

For any ε > 0, by (W2), there exists Tε > 0 such that(∫
|t|>Tε

ξ1(t)
µ1dt

)1/µ1

<
ε

8c1τµ∗1
(2.12)

and (∫
|t|>Tε

ξ2(t)
µ2dt

)1/µ2

<
ε

4c1D0τ νµ∗2
. (2.13)

By (2.4), (2.11)–(2.13) and the Hölder inequality, we have∫
|t|>Tε

∣∣W̃u(t, un)− W̃u(t, u)
∣∣|v|dt

≤
∫
|t|>Tε

c1
[
2ξ1(t) + ξ2(t)

(
|un|ν−1 + |u|ν−1

)]
|v|dt

≤ 2c1

∫
|t|>Tε

ξ1(t)|v|dt+ c1

∫
|t|>Tε

ξ2(t)
(
|un|ν−1 + |u|ν−1

)
|v|dt

≤ 2c1

(∫
|t|>Tε

ξ1(t)
µ1dt

)1/µ1

‖v‖µ∗1

+ c1

(∫
|t|>Tε

ξ2(t)
µ2dt

)1/µ2 (
‖un‖ν−1µ∗2

+ ‖u‖ν−1µ∗2

)
‖v‖µ∗2

≤ 2c1τµ∗1

(∫
|t|>Tε

ξ1(t)
µ1dt

)1/µ1

+ c1τ
ν
µ∗2

(∫
|t|>Tε

ξ2(t)
µ2dt

)1/µ2 (
‖un‖ν−1 + ‖u‖ν−1

)
<
ε

4
+
ε

4
=
ε

2
, ∀n ∈ N and ‖v‖ = 1. (2.14)

For the Tε given above, by (2.1), (2.10) and the continuity of W̃ , there exists Nε ∈ N such
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that ∫ Tε

−Tε

∣∣W̃u(t, un)− W̃u(t, u)
∣∣|v|dt

≤ τ∞

∫ Tε

−Tε

∣∣W̃u(t, un)− W̃u(t, u)
∣∣dt

<
ε

2
, ∀n ≥ Nε and ‖v‖ = 1, (2.15)

where τ∞ is the constant given in (2.1). Now for any ε > 0, combining (2.14) and (2.15),

we have

‖J (un)− J (u)‖E∗ = sup
‖v‖=1

|〈J (un)− J (u), v〉|

= sup
‖v‖=1

∣∣∣∣∫
R

(
W̃u(t, un)− W̃u(t, u)

)
· vdt

∣∣∣∣
≤ sup
‖v‖=1

∫ Tε

−Tε

∣∣W̃u(t, un)− W̃u(t, u)
∣∣|v|dt

+ sup
‖v‖=1

∫
|t|>Tε

∣∣W̃u(t, un)− W̃u(t, u)
∣∣|v|dt

≤ ε

2
+
ε

2
= ε, ∀n ≥ Nε.

This means that J is completely continuous. Thus Ψ ∈ C1(E,R) and (2.6) holds with

Ψ ′ = J . Consequently, Ψ ′ is completely continuous. This together with the reflexivity of

Hilbert space E implies that Ψ ′ is compact. In addition, due to the form of Φ in (2.5),

we know that Φ ∈ C1(E,R) and (2.7) also holds.

Finally, a standard argument shows that nontrivial critical points of Φ on E are

homoclinic solutions of (H̃S). The proof is completed. 2

We will use the following variant symmetric mountain pass lemma due to Kajikiya [29]

to prove that (H̃S) possesses a sequence of homoclinic solutions. Before stating this

theorem, we first recall the notion of genus.

Let E be a Banach space and A a subset of E. A is said to be symmetric if u ∈ A
implies −u ∈ A. Denote by Γ the family of all closed symmetric subset of E which

does not contain 0. For any A ∈ Γ, define the genus γ(A) of A by the smallest integer

k such that there exists an odd continuous mapping from A to Rk \ {0}. If there does
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not exist such a k, define γ(A) = ∞. Moreover, set γ(φ) = 0. For each k ∈ N, let

Γk = {A ∈ Γ | γ(A) ≥ k}.

Theorem 2.2 ( [29, Theorem 1]). Let E be an infinite dimensional Banach space and

Φ ∈ C1(E,R) an even functional with Φ(0) = 0. Suppose that Φ satisfies

(Φ1) Φ is bounded from below and satisfies (PS) condition.

(Φ2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak Φ(u) < 0.

Then either (i) or (ii) below holds.

(i) There exists a critical point sequence {uk} such that Φ(uk) < 0 and limk→∞ uk = 0.

(ii) There exist two critical point sequences {uk} and {vk} such that Φ(uk) = 0, uk 6= 0,

limk→∞ uk = 0, Φ(vk) < 0, limk→∞Φ(vk) = 0, and {vk} converges to a non-zero

limit.

In order to apply Theorem 2.2, we will show in the following lemmas that the functional

Φ defined in (2.5) satisfies conditions (Φ1) and (Φ2) in Theorem 2.2.

Lemma 2.3. Let (L0), (W1) and (W2) be satisfied. Then Φ is bounded from below and

satisfies (PS) condition.

Proof. We first prove that Φ is bounded from below. By (2.5) and (2.8), there holds

Φ(u) ≥ 1

2
‖u‖2 −

∫
R

∣∣W̃ (t, u)
∣∣dt

≥ 1

2
‖u‖2 − τµ∗1 |ξ1|µ1‖u‖ − τ

ν
µ∗2
|ξ2|µ2‖u‖ν , ∀u ∈ E. (2.16)

Since ν < 2, it follows that Φ is bounded from below.

Next, we show that Φ satisfies (PS) condition. Let {un}n∈N ⊂ E be a (PS)-sequence,

i.e.,

|Φ(un)| ≤ D1, and Φ ′(un)→ 0 as n→∞ (2.17)

for some D1 > 0. By (2.16) and (2.17), we have

D1 ≥
1

2
‖un‖2 − τµ∗1 |ξ1|µ1‖un‖ − τ

ν
µ∗2
|ξ2|µ2‖un‖ν ,
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which implies that {un}n∈N ⊂ E is bounded in E since ν < 2. Thus there exists a

subsequence {unk}k∈N ⊂ E such that

unk ⇀ u0 as k →∞ (2.18)

for some u0 ∈ E. By virtue of the Riesz Representation Theorem, Φ ′ : E → E∗ and

Ψ ′ : E → E∗ can be viewed as Φ ′ : E → E and Ψ ′ : E → E respectively. This together

with (2.7) yields

unk = Φ ′(unk) + Ψ ′(unk), ∀ k ∈ N. (2.19)

By Proposition 2.1, Ψ ′ : E → E is also compact. Combining this with (2.17) and (2.18),

the right-hand side of (2.19) converges strongly in E and hence unk → u0 in E as k →∞.

Thus Φ satisfies (PS) condition. The proof is completed. 2

Lemma 2.4. Let (L0), (W1) and (W3) be satisfied. Then for each k ∈ N, there exists an

Ak ∈ E with genus γ(Ak) = k such that supu∈Ak Φ(u) < 0.

Proof. We follow the idea of dealing with elliptic problems in Kajikiya [29]. Let d0 be

the length of the closed interval I0 in (W3). For any fixed k ∈ N, we divide I0 equally into

k closed sub-intervals and denote them by Ii with 1 ≤ i ≤ k. Then the length of each Ii

is a ≡ d0/k. For each 1 ≤ i ≤ k, let ti be the center of Ii and Ji be the closed interval

centered at ti with length a/2 . Choose a function ϕ ∈ C∞0 (R,RN) such that |ϕ(t)| ≡ 1

for t ∈ [−a/4, a/4], ϕ(t) ≡ 0 for t ∈ R \ [−a/2, a/2], and |ϕ(t)| ≤ 1 for all t ∈ R. Now for

each 1 ≤ i ≤ k, define ϕi ∈ C∞0 (R,RN) by

ϕi(t) = ϕ(t− ti), ∀ t ∈ R.

Then it is easy to see that

suppϕi ⊂ Ii (2.20)

and

|ϕi(t)| = 1, ∀ t ∈ Ji, |ϕi(t)| ≤ 1, ∀ t ∈ R (2.21)

for all 1 ≤ i ≤ k. Set

Vk ≡
{

(r1, r2, . . . , rk) ∈ Rk | max
1≤i≤k

|ri| = 1

}
and

Wk ≡

{
k∑
i=1

riϕi | (r1, r2, . . . , rk) ∈ Vk

}
.
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Evidently, Vk is homeomorphic to the unit sphere in Rk by an odd mapping. Thus

γ(Vk) = k. If we define the mapping F : Vk → Wk by

F(r1, r2, . . . , rk) =
k∑
i=1

riϕi, ∀ (r1, r2, . . . , rk) ∈ Vk,

then F is odd and homeomorphic. Therefore γ(Wk) = γ(Vk) = k. Moreover, it is evident

that Wk is compact and hence there is a constant Ck > 0 such that

‖u‖2 ≤ Ck, ∀u ∈ Wk. (2.22)

For any s ∈ (0, b) and u =
∑k

i=1 riϕi ∈ Wk, by (2.5), (2.20) and (2.21), we have

Φ(su) =
1

2
‖su‖2 −

∫
R
W̃ (t, s

k∑
i=1

riϕi)dt

=
s2

2
‖u‖2 −

k∑
i=1

∫
Ii

W̃ (t, sriϕi)dt

=
s2

2
‖u‖2 −

k∑
i=1

∫
Ii

W (t, sriϕi)dt, (2.23)

where the last equality holds by the definition of W̃ in (2.2) and the fact that |sriϕi(t)| < b

for all 1 ≤ i ≤ k. Observing the definition of Vk, for every u =
∑k

i=1 riϕi ∈ Wk, there

exists some integer 1 ≤ iu ≤ k such that |riu| = 1. Then it follows that

k∑
i=1

∫
Ii

W (t, sriϕi)dt

=

∫
Jiu

W (t, sriuϕiu)dt+

∫
Iiu\Jiu

W (t, sriuϕiu)dt

+
∑
i 6=iu

∫
Ii

W (t, sriϕi)dt. (2.24)

By (W3), (2.21) and the the definition of Vk, there holds∫
Iiu\Jiu

W (t, sriuϕiu)dt+
∑
i 6=iu

∫
Ii

W (t, sriϕi)dt ≥ −%d0s2, (2.25)

where d0 is given at the beginning of the proof. For each δn ∈ (0, b), combining (W3),
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(2.2) and (2.21)–(2.25), we have

Φ(δnu) ≤ Ckδ
2
n

2
+ %d0δ

2
n −

∫
Jiu

W (t, δnriuϕiu)dt

≤ δ2n

(
Ck
2

+ %d0 −
Mnd0

2k

)
. (2.26)

Here we use the fact that |δnriuϕiu(t)| ≡ δn for t ∈ Jiu . Note that δn → 0 and Mn → ∞
as n → ∞ in (W3). Then we can choose n0 ∈ N large enough such that the right-hand

side of (2.26) is negative. Define

Ak = {δn0u | u ∈ Wk}. (2.27)

Then we have

γ(Ak) = γ(Wk) = k and sup
u∈Ak

Φ(u) < 0.

The proof is completed. 2

Now we are in the position to give the proof of our main result.

Proof of Theorem 1.1. Lemmas 2.3 and 2.4 show that the functional Φ defined in (2.5)

satisfies conditions (Φ1) and (Φ2) in Theorem 2.2. Therefore, by Theorem 2.2, we get a

sequence nontrivial critical points {uk} for Φ satisfying Φ(uk) ≤ 0 for all k ∈ N and uk → 0

in E as k →∞. By virtue of Proposition 2.1, {uk} is a sequence of homoclinic solutions of

(H̃S). Since E is continuously embedded into L∞, then it follows that maxt∈R |uk(t)| → 0

as k → ∞. Hence, there exists k0 ∈ N such that uk is a homoclinic solution of (HS) for

each k ≥ k0. This ends the proof. 2
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